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Abstract 

Using Bunge's procedures, non-relativistic quantum mechanics is discussed. It  
is shown that if a certain carefully defined idea of determinism is included in 
the presentation, operators which are not ttermitian need to be used to describe 
physical processes. An absolute time scale is suggested. 

Bunge  (1967) has developed an axiomat ic  procedure  which he has 
used to write down the  postula te  of special relativistic kinematics.  A 
condensed version of this me thod  is used hero to write down a pre- 
senta t ion of a large par t  of  non-relat ivist ic  quan tu m  theory .  The terms 
FA, SA and P A mean  ' formal axiom' ,  ' semantic assumption '  and 
'physical  axiom'  respectively.  In  AX(9), the representa t ion  system 
defined in P a r t  I (Yates, 1968) is used to facil i tate the definition of the 
concept  of determinism. 

AX(1) : Time 
(a) T~ is an in terval  of the real line. FA  
(b) T,~ is the  range of the  t ime funct ion;  any  t ~ T,~ represents  an 

ins tan t  of t ime. SA 
AX(2) : System 

(a) P is a n o n - e m p t y  set. FA 
(b) E v e r y  Pc ~ P represents  a physical  system. SA 

AX(3) : State of a System 
(a) {Xi(t)lP i EP, t ~T~}  is a set of vectors  in a Hi lber t  space N. 

Each  Xi(t ) c {Xdt)IP ~ ~P , t  ~T, ,}  is the image of an e lement  of 
P • T,~, P • T~ being mapped  into N by a mapping  f '  in such a way 
t ha t  T m is in one-to-one correspondence with a complete set of basis 
vectors  in N. FA 

(b) {Xt(i)IP i e P,t  c T~} is a set of vectors  in a Hi lber t  space M. A 
mapping g' exists such t ha t  each Xt(i) c ( x t ( i ) lP  i ~P, t  c T,~} is the 
image of  an e lement  o f P  • T~. Note  t ha t  Xt( i )~ Xi(t ). 

(c) {X(i,t)lP ~ e P ,  t e T m }  is a set  o f  vectors  in a Hi lber t  space g 
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such that  each X(i , t )  �9 {X(i,t)[P~ � 9  �9 Tin} can be decomposed as 
follows : 

X(i ,  t) = Z~(i) | X d t  ) 

V = M |  FA 

(d) Each X(i , t )  �9 {X(i,t)[Pi �9 P , t  �9 Tin} represents the state of a 
system Pi �9 P at time t �9 Tin. SA 
R M K ( 1 )  : For the present purpose, N will act as an indexing space 
which would enable one to distinguish say, X(i , t ' )  from X(i , t")  
though Xt,(i ) and Xt,,(i ) may be equal, t', t" �9 T~. A correspondence 
between each Xt(i ) �9 {Xt(i ) [Pi �9 P, t �9 T, ,}  and the space co-ordinates 
of the system Pi �9 P at time t �9 T,~ will be developed in AX(6). 
{Xt(i)lt �9 Try} will need to include at least as much information as the 
set of Schrodinger descriptions of the state of the system Pi at all 
times t �9 Tin. In fact, were it not for AX(9), {xt(i)lt �9 T, d could be 
identical with this set of descriptions. 

As Weyl (1931, p. 49) points out, even in non-relativistic quantum 
mechanics a system is describable by the use of a co-ordinate system 
involving time as well as space co-ordinates; if a space-vector descrip- 
tion is given in a I-Iilbert space M '  where each physical state corre- 
sponds to one ray the space-time description can be given in a tensor 
product space V ' =  M '  | N without further ado. For instance, the 
Schrodinger wave-function r at t = t' could be written in two 
parts. r and r t'). r would be a space-vector descrip- 
tion for time t' and ~h2(t)~(t - t') would specify the time. The really 
important assumption is the idea that  one can describe the state of 
a system by means of a vector in Hilbert space at any time, t �9 T~, 
and as EX(1) will show this assumption is questionable. 

I t  has also been assumed that  the ideas 'system' and 'state of a 
system' are familiar ones. In the context of non-relativistic quantum 
mechanics, to demand sharper terminology on tha t  matter is to adopt 
a strongly operationalist point of view, which brings its own draw- 
backs with it. 

AX (4 )  : Observable 
(a) Z is a non-empty set. FA 
(b) Corresponding to each ~ �9 2 there exists an a �9 A. A is a set 

of linear transformations on M ",  subspaee of M. FA 
(c) There exists a representation R of M "  where the elements of 

the set 

{ Xt(i)[Xt(i) - Xt( i ) (M/M") ,P~ �9 P, t �9 Tin} 
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(which is isomorphic with the set of all vectors in M") are column 
vectors and the elements of A are square matrices. Each a ~ A is 
Hermitian in R. FA 

(d) Each ~ ~ Zis an observable. SA 
RMK(2) ." The concept 'average value of an observable' and similar 
ideas could now be defined if required. 
AX ( 5) : Configuration Space 

(a) {BI, ... Bn} are non-empty ordered sets of points. FA 
(b) {B, ... B~} describe a classical n dimensional configuration 

space. B I refers to one dimension, B2 to another, and so on. SA 
RMK(3): Each (n)-tuple in the set {@~... bn}Ib I e B~... b~ ~ Bn} 
describes the co-ordinates of a point in configuration space. 
A X ( 6 )  : Descript ion of  a State in  Configuration Space 

(a) {@ .. .  b~}]b~ e B I  . . .  b~ e Bn} is in one-to-one correspondence 
with a set of linearly independent basis vectors in M". FA 

(b) Every 

Xt(i)  e (Xt ( i ) lXt ( i )  =_ Xt ( i ) (M/M") ,P ,~  e P ,  t E Tin} 

in a function of all the n-tuples 

@~ . . . bn> e {@~...  b~}]bl e B~ . . . .  b~ e b b }  FA 

(c) Xt(i) e {Xt(i  ) [P~ ~ P,  t e T ~ }  is a description of the disposition of 
a system P~ e P in n-dimensional configuration space at time t e Tm. 
SA 
A X ( 7 )  : Probabil i ty  

(a) E '  is a non-empty set of projections. FA 
(b) e' e E '  is a projection on the subspace of g spanned by the basis 

vectors which (in the case of the configuration space having a Cartesian 
type co-ordinate system) refer to all points within the n-dimensional 
parallelotope in n-dimensional configuration space with sides parallel 
to the axes, and having as co-ordinates for two diagonally opposite 
points (the diagonal passing through the centre of symmetry), 
<bl . . .  bn> and <bl' ... b~'>. Each element of E'  corresponds in this 
way to an element of 

{((bl. . .bn),(bl ' . . .bn')) lbleB1.. .bneBn, b l' ~ B 1 . . . b  n' eBn} 
FA 

(c) 

(e' X ( i ,  t), X ( i ,  t)) e {(eX(i ,  t), X ( i ,  t))[P~ e P ,  t e Tin, e' e E ' }  

is a measure of the probability that  the configuration of state Pi ~ P 
at time t ~ T m is describable by  some point in the parallelotope 
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indexed as above by points @1, ... b~} and <bi', ... b~} in configura- 
tion space. SA 
DF(1) : For simplicity deal with only one system P,i from now on. i is 
retained as an index where necessary oi" convenient. 
AX(8) : Physical Process 

(a) G' is a non-empty set of transformations on V. FA 
(b) G ' =  {G(i,t',t)](X(i,t') = G(i,t ' ,t).X(i,t); 

G(i,t ' ,t").X(i,t) = 0  <=>t" r  ~T~}  PA 

(e) Physical processes are represented by changes where X(i, to) is 
transformed into 

G(i, t~, t~_l). G(i, t~_l, t~_.~) . . .  G(i, tl, to). X(i, to) 

each t o ... t~ ~ T~, n any integer. SA 
AX(9) : Determinism 

(a) Z s is the representation system constructed by u (1968) 
FA 

(b) A relationship between Z s and V is developed as follows. State- 
ments included in the development of AX(9) are prefixed AX(9). 
AX(9)/DF(2.0): T1 is a denumerable set of times chosen from T~. 

T i 2 =  {<t,t'}lt, t' ~ T1} 

AX(9)/RMK(4.0):  Ti  should include all the values of t ~ T~ which 
are relevant to the physical situation being considered in a particular 
instance. I t  is shown in EX(1) that  there may be specific restrictions 
on T1. The discussion for the case where T1 is non-denumerable 
becomes more complicated, and one would probably need to use the 
methods of continuous model theory (Chang & Keisler, 1966). 
AX(9)/DF(2.1): Physically relevant state vectors are those which 
correspond to expressions in Zs, using DF(2.3). Real state vectors are 
those X(i,t) defined by AX(3), with t e T1. Unreal state vectors are 
vectors in F which correspond (by way of DF(2.3)) to expressions in 
Zs, but which are not contained in {X(i, t)IPi e P, t ~ T~}. 
AX(9)/RMK(4.1):  1)F(2.3) is constructed in such a way that  real 
state vectors correspond to expressions in T (as defined by AX(3) of 
Part  I, Yates (1968)) whilst unreal state vectors correspond to 
expressions in R. The only explicit requirement, beyond symmetry 
and consistency, which Zs will impose is the fact that  T cannot contain 
sentences corresponding to processes during which real state vectors 
are changed by transformations on F to unreal state vectors. Such 
sentences are either contained in R or do not exist in Zs. Thus, 
sentences in T refer to real processes and sentences in R to unreal 
processes. 
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AX(9)/D.F(2.2): Q ~ {X(i,t)]t e TI} is the set of all real state vectors 
in V. {X~(i,t)]t e TI, ~ ~ Eo} is the set of all unreal state vectors in 11. 

Q u {X~(i, t)lt c T1, ~ ~ Eo} = V 

A X ( 9 ) / R M K ( 4 . 2 )  : {X~(i,t)[t ~ T1, c e Eo} will only be fully defined 
when the restrictions implied by  Z s are explicitly imposed, as they  
are in DF(2.3) and RMK(6). 
A X ( 9 ) / D F ( 2 . 3 ) :  There exist sets of operators G, GA, GA,, such tha t  
GA U G~, U G = Op. E o is just  the set of indices of the G~(-,.,-) which 
sat isfy the restrictions below, 

G =  ( G ( i , t ' , t ) ] G ( i , t ' , t ) . X ( i , t )  = X ( i , t ' ) ;  t ' , t " , t  ~T1;  

G(i, t', t) X ( i ,  t ') = 0 ~ t" ~ t} 

G A = ( G ~ ( i , t ' , t ) ] G ~ ( i , V , t ) . X ( i , t ) = X ~ ( i , t ' ) ;  t ' , t ' , t C T l , ~ E o ;  
G~(i, t', t ) .  X ( i ,  t ') = 0 ~ t" ~ t} 

G ~ , = ( G ~ l , ( i , t ' , t ) I G ~ l , ( i , t ' , t ) X ~ ( i , t ) = X ( i , t ' ) ;  t ' , t ' , t e T 1 ;  
~ ,~  ~E0;  G ~ 1 , ( i , t ' , t ) . X ~ ( i , t ' ) = O ~ > t ' ~ t ;  
G~l.(i, t', t) ~ G U GA} 

Mappings v, h from T1 and T12 into N are now defined, such tha t  to 
each t e T1 corresponds a unique w e N, with the proper ty  tha t  
P A ( w ) = w ,  and to each pair ( t , t ' } ~ T 1  "2 corresponds a unique 
g(w,w')  ~ N ,  P.~(w) = w, P. t (w')  = w'. 

One can also define a one-to-one correspondence t~ between G and 
a subset o r E  and a many-to-one correspondence t~x between G ,  U GA 
and another  subset of E. Similarly, one can define many-to-one and 
one-to-one correspondences tLl', t~' between subsets of V and E. The 
range of P~ is also defined, h in the following discussion, is a fixed 
number  in N.  G(i, .,.) are symbols for the vector space t ransformat ions  
and GI(', ") and G(., .) are symbols in Zs. 

~( t )  = w ,  P ~ 4 ( w )  = w 

~(t') = w', P A(w') = w' 
w' = w ~> t' = t, t, t' E T~ w, w" ~ N 
tL'(X(i, t)) = Gl(v(t), h), Gl(p(t), h) e T, t ~ T 1 
t~'(X~(i, t)) = G~(P,(,(t)),  h) t ~ TI, z ~ E 0 
~l((t ' ,  t ) )  = g(v(t'), ~(t)), t, t' e T1 
I~(G(i, t', t)) = Gl(v(t'), v(t)), t, t' ~ T 1 
t~i(g~.(i,t ' , t)) = G~(~(t'),Pv(~(t))), t , t '  ~ T~, z e E  o 
~(G~(i ,  t', t)) = gl(Pv(~(t '))  , ~(t)), t, t' �9 T~, z ~ E0 
~1([0]) = ~,  P~(h)  = h 

This defines the expressions in Z s. FA 
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AX(9)/RMK(~.3):  The more general cases where restrictions like 
G(i,t',t)X(t") = 0 <=> t" # t are removed from Op involves more com- 
plicated mappings but does not appear to change the results obtained. 
AX(9)/RMK(4.4):  The physical interpretation of G(i,t,t') (~ G) is 
simply 'when G(i, t, t') operates on a state vector u, a new state vector 
X(i,t) is produced iff u = X(i,t'). I f  u # X(i,t ') then the resulting 
expression is not a real state vector, and indeed is not physically 
relevant'. Now, since tz(G(i,t,t'))=G(v(t),v(t')) one can give the 
same meaning to G (v(t), v(t')), t, t' e T1, and so on. 
AX(9)/RMK(4.41):  Fortunately,  the explicit binary mappings [ ] 
o f N  2 into N are not required. For our immediate purposes all we need 
are the t ru th  values. In a longer and possibly more conventional 
calculus, (7, one might have written in place of G(v(t), v(t')) (= G(w, w') 
say) the expression 

St(u b (p v ~ p ) ( p P )  

St(a)(bc) means 'c replaces b in expression a' 

u ^ (p y ~ p )  = p  iff u = p  
u A ( p v . . ~ p ) = ~ p  iff u = ~ p  
u 4 (pv. - ~ p ) = r  iff u # p , u #  ~ p  

Also, one would require expressions like 

3 (k) Pf  (k,p) : 'There exists an expression k which proves p. '  
3 (k') Neg (k', ~ p): 'there exists an expression k' which refutes 

(not p)' 
3 (k") Pf  (k, V y ~ Pf  (y,r 'There exists an expression k" which 

proves r can't be proved within C.' 

In C, p would be the symbol referring to X(i,t); ~ p would be the 
symbol referring to (X~(i,t)l~ ~ Eo}, and u would be a variable, for 
which either a real or unreal state vector would be substituted. 

General expressions for the mappings could be developed as in 
DF(2.2). Similarly, G([p",p), [p',p]) would be replaced by 

st (St(u A. ( p  v. ~ p l l  , i,. ( p '  v. ~ p ' ) l  p , ,  

This form of statement, however, does not immediately indicate 
any obvious correspondences between C and M, nor does it lead to any 
evident decidability properties, and it needs an unnecessarily com- 
plicated axiom system for its statement. 
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A X ( 9 ) / R M K ( 4 . 5 )  : Z s includes sentences referring to transit ions from 
real to  unreal  states, bu t  such sentences are contained in R. Note t ha t  
unless terms like [t(1),r (1)] (t (1) e T0,r (1) e R0) are r as required by 
DF(14) of Pa r t  I (Yates, 1968), one could have had  sentences con- 
ta ined in T describing transit ions from a real s tate at  one t ime to an 
unreal state at  a later t ime with a re turn  to a real state at  a later t ime 
s t i l l - -a  physical ly unrealistic result. This can be seen by  put t ing  
p" = t (1), p '  = r (~) and  u = p = t (~) in the last expression of RMK(4.4). 

To explain why  one uses a product  as defined by  D F ( l l )  of Par t  I 
(u 1968) ra ther  t han  the product  as defined by  DF(14), DF(15) 
of Pa r t  I (u 1968) consider the very  simple t r u t h  value system B 
containing only two expressions, g- l ( t )  e T and g- i ( r )  ~ R ,  but  having 
otherwise ~he same structure  as Z. We determine the b inary  mapping 
[ ]' explicitly, by  comparison with the vectors and t ransformations 
in V. Let  the correspondences between vector space descriptions and 
descriptions in B be indicated by  a double arrow (~) .  

The set of vector space descriptions of real states and transit ions is 
called T and the corresponding set of unreal state and transition 
descriptions is called/~. 

For  simplicity consider only one t ime and omit  index i. T1 = {t'} 

{X(t')} e ~ ~ G(t, h) e T 

{X~(t')]~ e E0} ~/~ ~ G(r ,h )  ~ R 

{G~(t', t')[G~(t', t') . X ( t ' )  = X~(t'); G~(t', t') X~(t")  = 0 r 

t' # t"; z e Eo}  e / 2  ~ G(r, t) e R 
{G~l.(t', t')lG~1.(t', t ') . X~( t ' )  = X(t'); G~.(t ' ,  t ') X~(t")  = 0 <:~ 

t' ~ t";~,~i, e E o ; G ~ . ( t ' , t ' )  CT} e /~  ~ G(t , r )  e R  

Since B contains only two expressions, 

g(t, t) = t, g(r, t) = g(t, r) = r and t = h 
Also 

Thus 

So pu t  

Therefore 

{G(t' ,  t ' ) lG(t ' ,  t ' ) .  X ( t ' )  = X ( t ' ) }  ~ ~ ~ G(t, t) E T 

{G(t', t ' ) .  X(t')} ~ T ~ Gl([t,  t]', It, h]') c T 

[t, t]'  = t, It, h i '  = t 

{G~(t', t ') .  X ( t ' ) }  E t~ ::> G l ( [ f  , t]', It, h] ' )  ~ R 

[r, t]' = r 

{G~.(t'~ t ' ) .  X~( t ' ) }  e R ~ Gl([t,  r]', [r, t]') = G~([t, r]', r) ~ R (J {cp} 
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Thus 

Try 

Then 

But 

Thus 

J O H N  Y A T E S  

It, r]' = t or It, r]' = r 

[t, r]' = t 

{ r  r ) .  x~( t ' ) }  a .~ u { + }  ~ r r]', It, t]') = r  a T 

Gl([t, rJ', [t, t]') a R U {q)} 

[t, r]' = r 

The result is readily extended to a system such as Z s containing 
many expressions, and shows why [',PA(')] not [.,.] is used for the 
binary mapping. 
A X ( 9 ) / R M K ( 4 . 5 )  : To illustrate the last remark one can write a truth- 
value preserving many-to-one correspondence between the set of 
expressions in Zs (though not necessarily Z) and the set of expressions 
in B, by  defining a new function K, which maps 

(g(I),CllcE, E~Zs} onto (t ,r,r r a B }  

K ( j ) = r 1 6 2  P ~ . P v ( j ) , = r 1 6 2  

g ( j ) = t ~ P x ( j ) = j ,  j a n  

K( j )  = r ~ P x "Pv(J) = Pv(J)' j + N 

A X ( 9 ) / R M K ( 4 . 6 ) :  The semantic meaning of what has been said so 
far in AX(9) can now be written very concisely. 
AX(9)(c):  The fact that  expressions in Zs of the type 

GI(Pv(P'), n) a R iff GI(p', n) a T,  n a N 

g-l(p) ,  g- l (p,)  a P 

means that  the physical process is deterministic. SA 
R M K ( 5 ) :  Thus the present calculus, rather than merely affirming 
that  a system changes from the state described by  X(i , t )  to that  
described by  X(i ,  t') as one progresses from time t to time t', (t, t' a T1) 
also denies that  the system changes to any of the unreal states in the 
set {X=(i,t')]z a Eo}. 
R M K ( 6 ) :  The product of t~l(G~(i,t,t')) and t~l(G~,(i,t',t")) is t~l([0]). 
Thus 

G~(i, t, t '). G~,(i, t', t") = [0], ~ a Eo, t, t', t" a T1 

Similarly 
G(i, t, t') G~(i, t ' ,  t " )  = [o] ,  

G~(i, t, t '). G(i, t', t") = G~(i, t, t") t, t', t" e T1, ~, ~z a Eo 
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These equat ions give the  restrictions imposed on G~, Q and G~s b y  Z s. 
Le t  

H(i,  t', t). HE,(i, t', t). HE(i, t', t) t, t' ~ T1, ~ ~ Eo 

be t ransformat ions  on M and let 

L(t', t)(t', t e T1) 

be a t ransformat ion on N, such tha t  

H(i,  t', t). X~(i) = Xt,(i) 
H~,(~, r,  t). Xt~l(i) = Xt,(~) 
HE(i, t', t). X~(i) = X~,~(i) 
x~ ( i )  | x~(t) = x~(i ,  t) 
L(t', t). X~(t) = X~(t'), (X~(t'), X~(t)) = 0 
H(i,  t', t) | L(t', t) = G(i, t', t) 
H~,(i, t', t) | L(t', t) = G~.(i, t', t) 
HE(i, t', t) | L(t', t) = G~(i, t', t), ~, ~l, e E0 

As ment ioned  in RMK(1),  N i s  jus t  being used for indexing purposes.  
Using the results above  

H~(i, t, t '). H~(i, t', t") = [0] 
H(i,  t, t ').  H~(i, t', t") = [0] 
H(i,  t, t '). H(i ,  t', t") = H(i ,  t, t") 
H~,(i, t, t ').  HE,(i, t', t") = [0] 
H(i,  t, t ').  H~,(i, t', t") = [0], t, t', t" ~ T~, ~ ~ Eo 

Thus in the mat r ix  representat ion H~(i,t,t ') and H~,(i, t, t') (t, t' ~ T1) 
are ni lpotent  matrices of  index two, and H(i,  t, t') is of the form 

[00 A(t, t')] 
B(t, t')J 

where A (t, t') and B(t, t') are ye t  to be determined.  

d imA( t ,  t') = dim B(t, t') = � 8 9  

R M K ( 7 )  : A final point,  indicating a possibly fruitful line of  enquiry,  
is the physical ly interesting fact  t ha t  T* cannot  be represented in any  
consistent complete extension of Zs. Thus, there exists no Tarski 
theory,  with an associated consistent complete representat ion 
sys tem which is an extension of  Zs and at  the same time contains a 
predicate  capable of representing T*. 

AX(10 )  : Energy 
(a) H i is a t ransformat ion on M.  F A  
(b) lira (Xt+~t(i) - Xt(i) + iH~. ~tXt(i)} = 0, t e Tm F A  

~t--~0 
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(c) ~ is a set  of multiples of  the ident i ty  matrix.  FA 
(d) I f  for some e e ~, where e = EI ,  E a scalar, 

lim {Xt+~t(i) - Xt(i) + ie ~tXt(i)} = 0 
~t-->O 

then  E represents the energy of  the sys tem Pi  at  t ime t e T~. 
EX(1.0):  Let  sys tem Pi  change in s ta te  from Xt(i) 
(t, t + ~t e T~). ~t is ve ry  small. 

, ~ ,  [ ~ H ( i ,  t ' ,  t)~ 
H(i, t + 8t, t) - H(i, t, t) -1- o~,\ ~ '  }t'= 

x~+~, (  i )  = H (i ,  t + ~t ,  t)  X ~ ( i )  

Let  ~t -+ 0. Then 

SA 
to  Xt+~t,(i) 

_ ~OH(i, t', t)) 
�9 - H(~, t, t) xt(i) + ~t [ ~ ~-~, x,(i) 

{aH(~, r, t)] 
- i H i  = \ ~/ "/t'=t 

: [0 ~ 
(OB(i, t ,  t)/Ot')(t = t')] 

Assume H i is linear and independent  of time. a a n d E  are now time- 
independent  matrices. I f  one had  wished to make Hi t ime-dependent ,  
or indeed to split Hi into par ts  and use a per turba t ion  technique 
(Weyl, 1931, p. 30), the  development  is more complicated bu t  a 
similar kind of  process can be carried out.  

Solving the  equat ion in AX(10)(b) gives 

Xt(i) = exp [-iHi(t - t')] X t , (i) 

[; a { e x p [ - i f i , ( t - t ' ) ] -  l}/E] 
= exp [-iE(t - t')] Xt.(i) 

for exp [ - i H i ( t -  t')] to satisfy the  requirements  imposed b y  Zs, if  
t, t' E T1. T ,  ~ T~ is the  denumerable  set of t imes which are re levant  
to the physical  problem in hand. 

[00 A(i ' t ' t ' )]Xt.(i  ) exp [-iH~(t -- t')] X t, (i) = B(i, t, t')J 

This is t rue when, for some f 

a{exp [-iE(t -~, t')] - " f(t,  t') 
[10 exp [ - i E ( t - t  )] 1}/El Xt,( i)=[~ exp[_ i~( t_ t , ) ]Jx t , ( i  ) 
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Let  Xt,(i  ) be wri t ten as 

);t,l(i) 
Xt,,2(i) 

where Xt, l(i ) and Xt,2(i ) are vectors in spaces P1, P2. P1 and P2 are 
each of dimension �89 and M = P1 O P2. 

E X ( 1 . 1 )  : f ( t ,  t') can be evaluated as follows 

f ( t ,  t') Xt,2(i) = Xt,~(i) + a{exp [ - i ~ ( t  - t')] - 1} Xt,2(i)/E 

Using Zs, matrices H~(i , t , t ' )  and H~,(i , t , t ' )  are applied to a vector 
Xt,~(i ) with ~ ~ Eo and t, t' e T1. 

H~(i,  t, t') Xt,~(i ) = 0 

H~,(i, t, t') Xt,~, = 0 

Thus 

Xt, z(i ) = Xt,~l'(i ) 
0 

, I 

Xt,~l(i ) is a vector inP1.  Thus since the choice of H~,(i , t , t ' )  (~ ~ Eo is 
restricted only by  the requirements of RMK(6), vectors in 

{x,o( )It T1} 
have no components in P2- 

Fur ther ,  (Xt~(i)]t e T1, ~ e E0} contains all the vectors in P~. Thus, 
since (Xt~(i)lt ~T~ ,~  ~ E0} and Q must  be disjoint because of the 
consistency of Zs, Xt(i)  can be writ ten,  for each t e T1, as 

'0 

Xt2(i) 

where Xt2(i ) is a vector in P2. 
Thus f (t, t') = a{exp [-iJ~(t - t')] - 1 }/~ = 0. 
Thus exp [ - i E ( t  - t')] = 1, for all t, t' e T1. 

E X ( 1 . 2 ) :  AX(4), AX(5) and AX(6) make it natura l  to suppose t ha t  
Xt2(i) is a vector in M" ,  and tha t  M "  andP~  are at  least not  disjoint. 
I f  the restriction (DF(1)) t h a t  only a single system Pi is dealt  wi th  
had  not  been made,  then  a more rigorous relationship between M "  
and P2 could be developed in a straightforward but lengthy manner, 
though difficulties occur in any situation where the conventional 
superseleetion rules arise (Sehweber, 1961). 
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EX( 1 . 3 ) :  The argument of EX(1.1) shows that  the allowed values of 
t e T1 are integral multiples of 27r/~. This simply means that  it is only 
at such times both that  the conditions imposed by Zs are fulfilled, 
and that  suitable transformations exist in Hilbert space. At times 
t = 2nTr/E,, t ~ T,~, one obtains real 'expectation values' for Ht and H 
satisfies the requirement for membership of A given by AX(4). 

Also, (Xt(i), Xt(i)) oscillates as t varies. On the basis of the present 
nonrelativistic model such oscillations are not observable. I t  may be 
possible to obtain analogous results for a quantum field model by use 
of axiomatic formalism (Hang & Kastler, 1964) and algebraic logic 
(Halmos, 1962); such a model would seem more likely to lead to 
experimental comparisons. 

A number of arguments have already appeared in the literature 
supporting the use era  timcscale where the time parameter  is restricted 
to a denumerable set of equally spaced values. The 'absolute time' is 
usually related probabilistieally to a 'physical time' (Rankin, 1965). 

An alternative would be to postulate a 'cosmic time' with time 
T = 0 set at some definite instant in the past. Then the restriction 
would be on E, so that  E = 2nrr/T. n would be such a large integer 
tha t  this energy quantization could be very difficult to observe. 
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